Spam Detection in Twitter Trending Topics

Grant Stafford, Professor Louis Yu, advisor

April 11, 2013

Motivation Background

Motivation

"Spam will be a thing of the past in two years' time." -Bill Gates, 2004

"IHOP #Answer4Everything http://t.co/OLS7RpwL COOL VIDEO TELLS A METHOD TO EARN \$700+ DAILY!" -Twitter Spam, 2013

Motivation Background

Motivation

Why investigate spam in the Twitter trending topics?

Help users see only relevant information, such as

Curly Hair Problems @CurlyProbs 20 #30ThingsAboutMe sometimes I wish I had straight hair Expand

② Verify integrity of trends in the social network:

Close to 32% of messages in Sina Weibo come from spammers (Yu 2012).

Motivation Background

Spam Criterion

What is "spam"?

- Ontains a URL to a website completely unrelated to the topic or hashtag on a tweet.
- Petweets in which legitimate links are changed to illegitimate ones, obfuscated by URL shorteners.

Motivation Background

Related Work

General Approach

- Select textual and/or structural attributes
- Oevelop classifier via machine learning techniques
- Oetermine effectiveness of classifier and apply it

Detecting Spam Bots in Online Social Networking Sites (Wang, 2010)

- O Naive Bayes with structural and textual attributes is best.
- Q Roughly 3% of tweets are spam.

Detecting Spammers on Twitter (Benevenuto et. al., 2010)

- SVM trained on 1.8 billion tweets.
- ② Evaluated which attributes are most effective.

Gathering Data Attributes and Classifier Spam Impact Evaluatior

Gathering Data

Obtaining Tweets for Labelling

- Used tweepy python library to connect to Twitter streaming API.
- Filtered hourly on the trending topics worldwide for the 'en' language code.
- Program ran from 2/1/13 to 2/7/13 on a computing cluster in the CS lab, gathering data on over 9 million tweets across 801 distinct trending topics.

Construcing a Labelled Collection

- Hand-labelled nearly 1500 tweets randomly sampled from the data
- Ensured examples from each of the 170 hours and over 40 spam examples.

Labelled Collection	n Overview		
	Non-Spam Instances	Spam Instances	
	1453	42	

Gathering Data Attributes and Classifier Spam Impact Evaluation

Attributes

Attributes Identified by Previous Research (Beneventuo et al. 2010)

- URLs per word
- Total number of words
- Number of numeric characters
- Number of total characters
- Number of URLs
- Number of hashtags
- Number of mentions
- Number of retweets
- Whether the tweet was a reply
- *Rank of topic (added by us)

Evaluation

 χ^2 attribute selection, then compare mean values of attributes between classes.

Gathering Data Attributes and Classifier Spam Impact Evaluation

Classifier

Naive Bayes Classifier

Applies Bayes theorem from probability with assumption that the attributes are all independent, allowing us to compute:

$${\mathcal P}({\mathcal Spam})\prod_{i=1}^d (X_i|{\mathcal Spam})$$
 and ${\mathcal P}({\mathcal NonSpam})\prod_{i=1}^d (X_i|{\mathcal NonSpam})$

and assign the tweet to the class with the higher value.

Classifier Evaluation

- Standard information retrieval metrics: precision, recall, and F-measure (Macro and Micro F1) obtained by 10-fold cross validation.
- Compared against baseline classifier that classifies all as non-spam.

Gathering Data Attributes and Classifier Spam Impact Evaluation

Spam Impact Evaluation

Spam Percentage in Trending Topics Overall

Simply find the percentage of spam across our entire dataset.

Variance in Spam Percentage Among Trending Topics

Use Pearson's χ^2 goodness of fit test to establish whether observed distribution of frequencies differs from an expected distribution with equal percentages for all topics.

Effect of Spam on Topic Rankings

Count the number of topics which change rank after filter is applied.

Results Further Discussion

Attribute Evaluation

Attributes	Ranked	by	Signficance
------------	--------	----	-------------

Attribute	χ^2 Statistic	
URLs per word	116	
URLs	111	
Number of hashtags	71	
Numeric characters	17	
Rank of topic	12	
Whether tweet was a reply	3	

Attributes by Class

Attribute	Non-Spam Mean	Spam Mean
URLs per word	0.0077	0.0476
URLs	0.0847	0.5714
Number of hashtags	0.8671	1.0238
Numeric characters	1.3896	3.2177
Rank of topic	4.2638	6.1429

Grant Stafford, Professor Louis Yu, advisor Spam Detection in Twitter Trending Topics

Results Further Discussion

Classifier Evaluation

Confusion Matrix				
	Predicted			
		Spam	Non-Spam	
True	Spam	1327	125	
	Non-Spam	19	23	

Information Retrieval Metrics					
	Metric				
	Precision	Recall	F1		
Non-Spam	0.986	0.914	0.949		
Spam	0.155	0.548	0.242		
	Metrics Non-Spam Spam	Metrics Metr Precision Non-Spam 0.986 Spam 0.155	Metrics Metric Precision Recall Non-Spam 0.986 0.914 Spam 0.155 0.548	Metrics Metric Precision Recall F1 Non-Spam 0.986 0.914 0.949 Spam 0.155 0.548 0.242	

Comparison to Baseline

The Micro-F1 measure was 0.929 and the Macro-F1 measure was 0.596. Micro-F1 is 3% worse than baseline but Macro-F1 is 24% better.

Grant Stafford, Professor Louis Yu, advisor Spam Detection in Twitter Trending Topics

Results Further Discussion

Spam Impact

Overall Impact

- Previous research (Wang, 2010) estimated 3% spam messages overall.
- Our hand-labelled collection contained about 2.8% spam messages.
- Classifier marked 9.9% of the training dataset as spam.
- Classifier found average of 9.0% spam on test data.

Discussion

Suggests trending topics do not have significantly more or less spam than Twitter overall.

Results Further Discussion

Spam Impact

Variation of Spam Percentage Across Topics

- Every one of the 170 tests was significant at the 5% level.
- The average value of the chi-squared statistics was 7008.

Discussion

Strongly suggests that the percentage of spam is not anywhere close to uniform across the trending topics.

Results Further Discussion

Spam Impact

Spam Impact on Rankings of the Trending Topics

- 47% (81 of the 170) time periods saw no change.
- On average, 1.66 topics differed from previous ranking.

Discussion

Any change in rankings requires 2 topics out of position, suggesting that rankings were not greatly affected by the presence of spam.

<mark>Results</mark> Further Discussior

Frequency of Rank Changes Across Periods

Results Further Discussion

Spam Impact

Explaining the Findings

How can spam have so little impact on the rankings despite being far from proportionally distributed across topics?

Results Further Discussior

Average Tweets Per Hour by Rank

Results Further Discussior

Average Tweets Per Hour by Rank

Results Further Discussion

Conclusions

Observations

- Some topics, such as news stories, often contain URLs. Spammers may take advantage of this fact when targeting topics.
- Personal topics, such as #30FactsAboutMe, rarely contain links and tend to elicit short responses from users. Increased user participation or decreased spammer targeting may be factors for these.

Takeaways

- Spammers don't drive trending topic popularity; they piggyback on topics they find to be most effective for spreading their messages.
- Due to spam prevention techniques or other factors, Twitter trends represent users fairly truthfully.

Any questions?

Feel free to use more than 140 characters!

Future Work

Deeper

Given limited time to gather, process, and classify data and to analyze results on this complex topic, we obtained interesting findings, but could go deeper:

- Quantify topic vulnerability: how do news and personal topics compare?
- Including structural attributes: enhanced support for these conclusions.