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1 Introduction

1.1 Motivation

In this paper we explore the mathematical connections between the fields of
game theory and machine learning. Although the fields are ostensibly
different, they share deep connections through the abstract field of informa-
tion theory. In particular, both game theoretic and learning processes share
dynamic behavior described by a fundamental concept in information theory.
These connections are mathematically elegant and provide interesting perspec-
tives on problems in both domains (and others). In application, there is wide
applicability of game-theoretic algorithms to diverse learning problems, as illus-
trated by the derivation of the effective multiplicative weights learning algorithm
from matrix games.

1.2 Background

1.2.1 Game Theory

Game theory is typically defined as the study of mathematical models of
conflict and cooperation between intelligent rational decision-makers.

Although there are many different models representing games between agents,
most share many of the following features with refinements for incomplete in-
formation, sequential play, bounded rationality, and more.

In a game, each of the players has a finite set of moves (which may
include ”do nothing”) from which they select one to play at each iteration of
the game. At the conclusion of each iteration of play, a function defined by the
game converts the set of chosen moves into a set of real valued payoffs for each
player. As rational agents, each player attempts to maximize their individual
payoff.

A game is zero-sum if, in each iteration of the game, for any choice of
moves by the players, the sum of the payoffs is zero. In considering connections
to machine learning, we will first consider some of the simplest games: matrix
games.

1.2.2 Machine Learning

Machine learning is concerned with giving computers the ability to learn
without being explicitly programmed. Although there are many different sub-
fields of machine learning, most techniques combine ideas from statistics and
artificial intelligence.

In connections to game theory we mainly concern ourselves with supervised
learning: finding a hypothesis, a good approximation to some unknown target
function f , given training examples (x, f(x)) that map inputs to target outputs.
Since supervised learning relies on known examples, it implicitly relies on the
inductive learning hypothesis: “any hypothesis found to approximate the
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target function well over a sufficiently large set of training examples will also
approximate the target function well over other unobserved examples.”

A classic application of supervised learning is to classification problems,
in which the goal is to correctly classify inputs into categories based on their
features. An example of this might be classifying emails into spam and not spam
categories based on their text, sender, and other features. Basic classification
hypotheses can be formulated by a variety of methods, but techniques that can
combine diverse classification hypotheses have often produced better results.

1.2.3 Information Theory

Information theory, developed by Shannon and Weaver [8], is a field of math-
ematics involved with the quantification of information. Originally developed
to study problems in communication, it has since found applications in a vast
number of other fields. The abstractions developed in information theory have
helped solve problems in data compression, statistical analysis, and modelling
of probabilistic phenomena and are central to understanding the connection
between game theory and machine learning.

1.3 Related Work

Although not the first to note connections, [1] and [2], authored by the Shapire
and Freund, the pioneers of the adaptive boosting (AdaBoost) technique, are
some of the earliest papers explaining game theoretic interpretations of a specific
learning algorithm. These sources detail game-theoretic derivations of the mul-
tiplicative weights algorithm and its relation to boosting techniques prominent
in machine learning.

In relation to game theory, [3] by Fryer provides the relevant information
theory definitions needed for this paper, mentioned earlier by Shannon [7] and
Kullback & Liebler [6]. The proof of the connection between replicator dynamics
and Bayesian inference is provided by Harper in [4] and serves as a powerful
general link between learning and game dynamics.

Though beyond the scope of this paper, the field of information geometry
outlined in [5] has recently produced elegant results that generalize phenomena
in machine learning and game theory as well as statistical physics and other
fields.

2 The Multiplicative-Weights (MW) Algorithm

2.1 Matrix Games

A matrix game is a two-player zero-sum game in which both players (P1

and P2) have a constant and fixed number of moves, allowing the payoffs be
represented in a single payoff matrix. A payoff matrix for a matrix game
G with m moves for player 1 and n moves for player 2 is the m × n matrix
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M = [aij ] where aij is the payoff to player 1 if player 1 plays move i and player
2 plays move j.

In such games we typically want to analyze which moves players will choose.
On each iteration of the game a player can only choose one move, but over many
iterations of a game players can effectively randomize which moves they play.
We define a strategy for a player with n moves as a probability vector with n
entries a1, . . . , an where ai denotes the probability that the player selects move
i. A pure strategy is one in which a single entry is 1 and all others are 0.
Strategies with more than one positive entry are called mixed strategies.

The expected payoff for a game with P1 strategy P and P2 strategy Q
is
∑
i,j P (i)MQ(j) = PTMQ. It can be used to measure the effectiveness of

various strategies.
For the remainder of this section, we consider matrix games as defined above,

but with two slight modifications. Here the values of the matrix represent
losses (rather than payoffs) for the first player and all values in the matrix are
normalized to be within the interval [0, 1].

2.1.1 An Example

Consider the matrix game representation of standard Rock, Paper, Scissors

M =


R P S

R 1
2 1 0

P 0 1
2 1

S 1 0 1
2


If P1’s strategy is to play only rock, his strategy vector is P = [1, 0, 0] (a

pure strategy) and if his strategy is to play each move with equal probability
his strategy vector is P = [ 13 ,

1
3 ,

1
3 ] (a mixed strategy). If P = [ 13 ,

1
3 ,

1
3 ] and

Q = [ 12 ,
1
2 , 0] the expected loss is 1

2 .

2.2 The Minimax Theorem

The classic approach to finding the “solution” to matrix games has applied the
famous minimax theorem [9]:

Minimax Theorem.

min
P

max
Q

M(P,Q)︸ ︷︷ ︸
minimax

= max
Q

min
P

M(P,Q)︸ ︷︷ ︸
maximin

This theorem says that the minimax strategy payoff is equal to maximin
strategy payoff. Intuitively, if players choose strategies to defend against their
worst case scenario, there is no advantage to knowing the opponent’s move
before it is played. In this sense, the minimax and maximin strategies are
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optimal and finding them, typically via linear programming, gives the “solution”
for a matrix game. We can then define the value of a game v as

v = min
P

max
Q

M(P,Q) = max
Q

min
P

M(P,Q)

The minimax theorem is a powerful result but may not be able to give the
optimal strategies in certain circumstances. If M is unknown or too large the
minimax approach may be infeasible. Additionally, if the column player is not
fully adversarial then the row player may be able to obtain a loss significantly
smaller than v.

2.3 The MW Algorithm

2.3.1 Preliminaries

The MW algorithm is an alternative mechanism for selecting strategies. We will
initially examine the MW algorithm from a game-theoretic point of view and
note results about its effectiveness. We consider a game on a matrix M with
row player R and column player C. The matrix is possibly unknown to R and
the game is repeated for a number of rounds. On round t = 1, . . . , T :

1. R chooses a mixed strategy Pt.

2. C chooses mixed strategy Qt (possibly with knowledge of Pt).

3. R is observes the loss M(i, Qt) for each row i, the loss he would have
suffered playing the pure strategy i.

4. R suffers loss M(Pt, Qt).

The goal of R is to minimize his total loss
∑T
t=1M(Pt, Qt).

2.3.2 The Algorithm

To update his strategies, R maintains non-negative weights on each row of M .
Let wt(i) denote the weight at time t on row i.

The algorithm starts with each weight set to 1. On each round t, R computes
a new mixed strategy Pt by normalizing the weights:

Pt(i) =
wt(i)∑
i

wt(i)

Then once he has observed M(i, Qt) for each i, R updates the weights by a
simple multiplicative rule:

wt+1(i) = wt(i) ∗ βM(i,Qt)

Where β ∈ [0, 1) is a parameter of the algorithm, the adjustment rate.
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2.3.3 Performance

Although it is not immediately obvious, the MW algorithm has very desirable
performance characteristics. It can potentially do much better than the minimax
strategy and even in the worst case it will do approximately as well as the
minimax strategy. The results below formalize the performance of the algorithm.

Theorem 1. For any matrix M with n rows and entries in [0, 1] and for any
sequence of mixed strategies Q1, . . . , QT played by C, the sequence of mixed
strategies P1, . . . , PT produced by algorithm MW with parameter β ∈ [0, 1) sat-
isfy:

T∑
t=1

M(Pt, Qt) ≤ aβ min
P

T∑
t=1

M(P,Qt) + cβ lnn

where

aβ =
ln(1/β)

1− β
cβ =

1

1− β

Proof. The proof from [1] is included in appendix A for completeness.

Corollary 1. Under the conditions of Theorem 1 and with β set to

1

1 +
√

2 lnn
T

the average per-trial loss suffered by R is

1

T

T∑
t=1

M(Pt, Qt)︸ ︷︷ ︸
actual

≤ min
P

1

T

T∑
t=1

M(P,Qt)︸ ︷︷ ︸
best

+ ∆T︸︷︷︸
regret

where the regret ∆T =
√

2 lnn
T + lnn

T = O(
√

lnn
T ).

R’s regret is the additional loss suffered beyond the loss suffered by the
minimax strategy. Since R’s average per-trial regret is logarithmic in the number
of rows and independent of the number of columns, the average performance
of the MW algorithm will never be more than a relatively small amount worse
than minimax. In addition, observe that as T → ∞, ∆T → 0. That is, after
enough rounds R’s average per-trial regret goes to zero.

2.4 MW Applied to On-Line Prediction

2.4.1 On-Line Prediction

To illustrate the use of the MW algorithm in learning we consider an on-line
prediction scenario, in which a learner predicts the categories of a sequence
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of examples presented one at a time by the environment while attempting to
minimize prediction errors.

Formally, let X be a finite set of examples, and let H be a finite set of
hypotheses h : X → {0, 1}. Let c : X → {0, 1} be an unknown target concept,
not necessarily in H.

On-line learning takes place in a sequence of rounds. On round t ∈ {1, . . . , T}:

1. The learner observes an example xt ∈ X.

2. The learner makes a randomized prediction ŷt ∈ {0, 1} of the label asso-
ciated with xt.

3. The learner observes the correct label c(xt).

The goal of the learner is to minimize the expected number of mistakes that
he makes relative to the best hypothesis in the space H.

2.4.2 Applying the MW Algorithm

To apply the MW algorithm we let the learner take the role of R, the row player,
and let the environment take the role of C, the column player.

The environment’s choice of a column corresponds to a choice of an instance
x ∈ X that is presented to a learner on a given iteration. The learner’s choice
of row corresponds to choosing a specific hypothesis h ∈ H and predicting the
label h(x). A mixed strategy for the learner corresponds to making a random
choice of a hypothesis with which to predict.

Because we are modelling a classification problem the environment only plays
pure strategies. So we have a matrix game with |H| rows representing the
hypotheses h ∈ H and |X| columns representing the examples x ∈ X. We
define the matrix entries to have value 1 if and only if h disagrees with the
target c on instance x. So we have the mistake matrix

M(h, x) =

{
1 if h(x) 6= c(x)
0 otherwise

We apply the MW algorithm to the matrix M . On round t, given instance
xt, MW provides a distribution Pt over the rows of M . We randomly select
ht ∈ H according to Pt, and predict ŷt = ht(xt). Next, given c(xt) we compute
M(h, xt) for each h ∈ H and update the weights. Note that β, the adjustment
rate parameter, can be considered to be the learning rate parameter in this
context.
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2.4.3 Performance

Note that

M(Pt, xt) =
∑
h∈H

Pt(h)M(h, xt)

= Pr
h∼Pt

[h(xt) 6= c(xt)]

= Pr[ŷt 6= c(xt)]

Combining this with Corollary 2, the expected number of mistakes made by
the learner is

T∑
t=1

M(Pt, xt) ≤ min
h∈H

T∑
t=1

M(h, xt) +O(
√
T ln |H|)

which means that the number of mistakes made by the learner cannot ex-
ceed the number of mistakes made by the best hypothesis in H by more than
O(
√
T ln |H|).

2.5 An Example

The following toy example will illustrate the MW algorithm. We assume we are
in a on-line learning scenario trying to correctly classify emails into spam and
non-spam categories. Our set of instances X contains the following elements,
emails represented as (sender, subject, message) vectors:

• b1 : (Friend, Cool Video, “Check out this YouTube video: link”)

• b2 : (College, College Newsletter, “College Announcements ...”)

• b3 : (Money Inc., EZ MONEY, “CALL 123-456-7890”)

• b4 : (Government.com, SSN Request, “Renew your SSN: link”)

• b5 : (News.com, Breaking News!, “Watch this video!: link”)

Our target concept function c will yield 1 on spam messages and 0 on non-spam
messages, which gives the following:

• c(b1) = 0

• c(b2) = 0

• c(b3) = 1

• c(b4) = 1

• c(b5) = 1

Our hypothesis space H contains the following elements, functions that attempt
to yield 1 on spam messages and 0 on non-spam messages:
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• a1(x) = 1 if x’s sender not in contacts list, 0 otherwise

• a2(x) = 1 if x′’s subject in all caps, 0 otherwise

• a3(x) = 1 if x contains links, 0 otherwise

• a4(x) = 1 if a1(x) = a3(x) = 1, 0 otherwise

The above results give the following mistake matrix M , where 1 entries indicate
that the hypothesis of the row disagrees with the target concept in classifying
the email of the column:

M =


b1 b2 b3 b4 b5

a1 0 1 0 0 0
a2 0 0 0 1 1
a3 1 0 1 0 0
a4 0 0 0 0 0


At the beginning of the first round t = 1 we have a weight of 1 on each of

our hypotheses: w1(a1) = w1(a2) = w1(a3) = w1(a4) = 1. This means that our
initial strategy will be to use each hypothesis with equal probability

P1 =

 w1(a1)∑
i

w1(i)
,
w1(a2)∑
i

w1(i)
,
w1(a3)∑
i

w1(i)
,
w1(a4)∑
i

w1(i)

 =

(
1

4
,

1

4
,

1

4
,

1

4

)

Now let’s assume that Qt = (0, 0, 0, 1, 0) and b4 is presented as the first example.
So x1 = b4. Say that using P1 we randomly select a1 as our hypothesis for this
round. So h1 = a1. We will predict that x1 is spam because its sender is
not in our contacts list: ŷ1 = h1(x1) = 1. It is revealed to actually be spam
(c(x1) = 1 = ŷ1) so we suffer no mistake this round.

Now we observe how each of the other hypotheses would have done on this
example. Think of this as us considering the counterfactual situations in which
we used a different hypothesis on this example. We see that M(a2, x1) = 1,
which means that a2 would have made a mistake on this example and may not
be a good hypothesis.

At the conclusion of the round we update the weights for each of our hy-
potheses according to the following formula.

w2(i) = w1(i) ∗ βM(i,Qt) for some β ∈ [0, 1)

M(a1, Q1) = M(a3, Q1) = M(a4, Q1) = 0, so we can see that

w2(a1) = w2(a3) = w2(a4) = 1 ∗ β0 = 1

a1, a2 and a4 retain their weight of 1 for the next round. This makes sense,
we will never lower the weight on a hypothesis until it errs on an example.
M(a2, Q1) = 1 so we have

w2(a2) = 1 ∗ β1 = β
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Because β ∈ [0, 1), the weight on a2 will be decreased. The size of β parameter
determines how quickly we adjust our strategy. Values of β close to 1 are
conservative and change our strategy slowly, while values of β close to 0 make
aggressive changes. Assume for this example we let β = 1

2 , so that w2(a2) = 1
2 .

At the start of round t = 2 we will have a new strategy P2 = ( 2
7 ,

2
7 ,

2
7 ,

1
7 ).

We see that we are less likely to use hypotheses which would have performed
poorly in the past and are more likely to use hypotheses which have not made
mistakes. If we continue to use the MW algorithm as we observe more examples
we will eventually converge to the optimal strategy P ∗ = (0, 0, 0, 1), which is to
always use hypothesis a4. The discussion above tells us that relative to always
using a4 from the start, the MW algorithm will make only a reasonably small
number of additional mistakes. It is an effective algorithm for on-line learning.

2.6 Relation to Bayesian Inference

Although the MW algorithm is a concrete example of a useful game theory and
machine learning connection, its relation to more fundamental mathematical
connections between games and learning may be unclear. As it turns out, under
the log loss function the MW algorithm with β set to 1

e is equivalent to the Bayes
prediction rule, where the generated distributions over the rows are equal to the
Bayesian posterior distributions [2]. The widespread appearance of Bayesian
inference in both machine learning and game theory makes this a powerful
connection, as we will see in the next section.

3 Evolutionary Game Theory and Inference

3.1 Information Theory

Before discussing Bayesian inference and evolutionary game theory some key
concepts in information theory must be defined. First is entropy [7], denoted
H(P ), a measure of the average uncertainty in a random variable P . It can be
interpreted as the average number of bits needed to encode a message drawn
i.i.d from P . For example, a random variable that has a uniform distribution
over 32 outcomes would need a label that takes on 32 different values so we have
that the entropy of this random variable is

H(X) = −
32∑
i=1

p(i) log2 p(i) = −
32∑
i=1

1
32 log2

1
32 = log2 32 = 5 bits

The other concept from information theory that will be critical for this paper
is the Kullback-Leibler divergence [6] (sometimes called information gain,
information divergence, or relative entropy), a measure of information
gain from one state to another. It is an average measure of the additional bits
needed to store y given a code optimized to store x. It is defined as
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DKL(x||y) =
∑
i

xi log
xi
yi

=
∑
i

xi log xi −
∑
i

xi log yi

= H(x)−H(x, y)

Where H(x, y) is the cross entropy of x and y, the average number of bits
needed to identify an event from a set of possibilities, if coding scheme is used
based on y rather than x.

Observe that minimizing DKL is equivalent to minimizing the cross entropy.
Intuitively, minimizing DKL with respect to y is trying to find the best distri-
bution to approximate the ’true’ distribution x [3].

3.2 Bayesian Inference

Bayesian inference is an inference system often used in machine learning.
It features prominently in the scientific context, as the scientific method is es-
sentially an application of Bayesian inference. As the name implies, Bayesian
inference relies on the well-known Bayes’ Theorem [4]:

P (Hi|E) =
P (E|Hi)P (Hi)

P (E)
for i = 1, 2, . . . , n

where:

• The events H1, H2, . . . ,Hn constitute the entire state space:

n∑
i=1

P (Hi) = 1

In the context of the scientific method, the events H1, H2, . . . ,Hn are
hypotheses which cover all possibilities.

• P (Hi) is called the prior probability of Hi.

In the context of the scientific method, P (Hi) represents the likelihood of
the hypotheses under available background knowledge.

• E represents the event of encountering new evidence and

P (E) =

n∑
i=1

P (E|Hi)P (Hi)

is the marginal probability of E. P (E) appears in the denominator of
Bayes’ rule to normalize the equation.

In the context of the scientific method, E represents the result of an ex-
periment and P (E) serves to normalize the results.
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• P (Hi|E) is called the posterior probability of Hi given the evidence E.

In the scientific context, P (Hi|E), the likelihood of our hypotheses given
the results from our experiments, is the what experimenters desire to
determine. Bayes’ Theorem presents how results from experiments can be
used to find this.

Given a sequence of observed evidence E1, E2, . . . the probabilities of the
events H1, H2, . . . ,Hn can be updated in a dynamic process. At each step
the Kullback-Liebler divergenceDKL(P (H|E)||P (H)) measures the information
gained from moving from the prior distribution to the posterior distribution. If
we consider H∗ to be the true distribution for H, then after each iteration
of the process DKL(P (H∗)||P (H|E)) represents the potential information
of the system. The potential information of the system will decrease on each
iteration until the prior distribution and the posterior distribution match, at
which time the potential information is zero.

In the context of the scientific method, repeated experiments form the dy-
namic process and the KL divergence measures how much was learned about
the hypotheses from the results of each experiment. Potential information rep-
resents how much still stands to be learned about the phenomenon under study
and naturally decreases as theories more accurately reflect reality.

3.3 Evolutionary Game Theory

Evolutionary game theory applies concepts from game theory to model biolog-
ical evolution. Key to these models is the replicator dynamic, a dynamic
for describing how the entities in a system, say phenotypes such as fur color,
propagate themselves over time. The discrete replicator dynamic looks at
the change in a population over discrete generations and is defined as

x′i =
xifi(x)

f̄(x)
for i = 1, 2, . . . , n

where:

• xi is the proportion of the population of the ith type and x = (x1, . . . , xn)
is the population distribution. All possible states of the population can
be described by the types i.e.

∑
i xi = 1.

• f = (f1, . . . , fn) is the fitness landscape and each function fi(x) is the
fitness of type i dependent on population distribution x.

• f̄(x) =
n∑
i=1

xifi(x) is the average fitness.

• x′i is the frequency of type i in the next generation of the population.

Upon each generation the types are adjusted in proportion to their fitness
relative to the average population fitness. Over time the population will adjust
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to fitness landscape, increasing the proportion of some types at the expense
of others. The stable fixed points of the replicator dynamic are in fact Nash
equilibria, which generalizes von Neumann’s minimax theorem [10]. A specific
subset of these fixed points, evolutionary stable states, are of particular interest.

An evolutionary stable state (ESS) of the replicator dynamic is a pop-
ulation distribution that is robust to invasion by mutant types. Formally, a
distribution x̂ is an ESS of the replicator dynamic if x̂ · f(x) > x · f(x) in some
neighbohood of x̂. This means that evolutionary stable states are asymptoti-
cally stable points of the replicator dynamic, better replies than all neighboring
strategies. Note that an ESS may not always exist, such as in an evolutionary
version of the standard rock, paper, scissors game.

Theorem 2. Suppose that the fitness landscape is strictly positive, that is
fi(x) > 0 for all i and x. If the population distribution unfolds according to
the discrete replicator dynamic then x̂ is an interior ESS if and only if the
potential information is decreasing along iterations of the dynamic.

Proof. Reproduced from [4]
First note that the ESS condition can be stated as

x̂ · f(x)

x · f(x)
> 1

for all x in a neighborhood of x̂ (since we’ve assumed that the fitness landscape
is strictly positive).

Consider the difference in potential information of two successive states:

P = DKL(x̂||x′)−DKL(x̂||x)

Assume that x is in the ESS neighborhood of x̂. Then,

P =
∑
i

x̂i log x̂i −
∑
i

x̂i log x′i −

(∑
i

x̂i log x̂i −
∑
i

x̂i log xi

)
=
∑
i

x̂i log xi −
∑
i

x̂i log x′i

=
∑
i

x̂i log xi −
∑
i

x̂i log

(
xi
fi(x)

f̄(x)

)
= −

∑
i

x̂i log

(
fi(x)

f̄(x)

)

≤ − log

(∑
i

x̂i
fi(x)

f̄(x)

)
= − log

(
x̂ · f(x)

x · f(x)

)
< 0

Where the log was moved outside the sum using Jensen’s inequality.
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3.4 Relation of the Replicator Dynamic to Bayesian In-
ference

We see that both Bayesian inference and the replicator dynamic are dynamical
systems governed by decreasing potential information. This is no coincidence.
Mathematically, Bayesian inference is a special case of the discrete replicator
dynamic; the posterior probability of any given hypothesis will not depend ex-
plicitly on the probability of other hypotheses. The table below gives the cor-
respondence between the two concepts.

Formal Analogies
Bayesian Inference Discrete Replicator
Prior Distribution (P (H1), . . . , P (Hn)) Population state x = (x1, . . . , xn)
New Evidence P (E|Hi) Fitness landscape fi(x)
Normalization P (E) Mean fitness f̄(x)
Posterior distribution P (H1|E), . . . , P (Hn|E) Population state x′ = (x′1, . . . , x

′
n)

True Distribution H∗ Evolutionary Stable State x̂

3.5 Kullback-Liebler Divergence as a Lyapunov Function
for the Replicator Dynamic

The importance of potential information extends beyond discrete systems. It
also underlies the dynamics of a continuous version of the replicator dynamic:

ẋi = xi(fi(x)− f̄(x))

Recall that a Lyapunov function V is a continuous function such that
V (0) = 0 and V (x) > 0 ∀x ∈ U \ {0} for some neighborhood region U around
x = 0 .

Given some x∗ = 0 as the equilibrium of the autonomous system ẋ = f(x):

• If V̇ (x) ≤ 0 ∀x ∈ U \ {0} then the equilibrium is stable.

• If V̇ (x) < 0 ∀x ∈ U \{0} then the equilibrium is locally asymptotically
stable.

• If V̇ (x) < 0 ∀x ∈ Rn \ {0} and ||x|| → ∞ ⇒ V (x)→∞ the equilibrium is
globally asymptotically stable.

We can think of a Lyapunov function as describing the “potential energy” of
a system. It takes positive values everywhere except the points of equilibrium
and is non-increasing along every path that the system can take. It allows us to
analyze the stability of points without knowing the exact solution to the system.

An important fact about the Kullback-Leibler divergence related to the con-
cept above is Gibbs’ inequality which states:

DKL(x||y) ≥ 0 with equality if and only if x = y

It follows that DKL(x∗||y) is always a local Lyapunov function for x∗. We
use this fact in the following theorem.
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Theorem 3. The state x̂ is an interior ESS for the replicator dynamic if and
only if DKL(x̂||x) is a local Lyapunov function.

Proof. Reproduced from [4]
Let V (x) = DKL(x̂||x) =

∑
i

x̂i log x̂i −
∑
i

x̂i log xi

By the discussion above it is a Lyapunov function for x̂.

V̇ (x) = −
∑
i

x̂i
ẋi
xi

= −
∑
i

x̂i(fi(x)− f̄(x))

= −
∑
i

x̂ifi(x) +
∑
i

x̂if̄(x) = −
∑
i

x̂ifi(x) +

(∑
i

x̂i

)
f̄(x)

= −
∑
i

x̂ifi(x) + f̄(x) = −(x̂ · f(x)− x · f(x)) < 0

The last inequality holds if and only if x̂ is an ESS.

DKL(x̂||x) is the potential information of the system and as proved above
it is continually decreasing and becomes minimized as the system converges. In
essence, the population ’learns’ how best to survive in its environment, stabiliz-
ing once ecological niches are filled.

Similarly, one can consider scientific hypotheses in a ’Darwinian competition’
to match our observations of the world, so that only the ’fittest’ ideas survive.
The learning-evolution connection has seen practical application in the evolu-
tionary algorithms of artificial intelligence, which typically mimic evolutionary
dynamics in an attempt to determine optimal parameters for complex models.

3.6 Other Fields

Information geometry is a branch of mathematics that combines differential
geometry and probability theory. In light of the above discussion, it is unsur-
prising that the replicator equation is known as the natural gradient, and is
closely linked to the fundamental information metrics of information geometry
[4].

Statistical physics has also been shown to have mathematical connections
with game theory. Gibbs entropy from statistical thermodynamics is equivalent
to the information-theoretic entropy used in this paper multiplied by Boltzman’s
constant, so this result was not entirely unexpected. Interestingly, some of the
same mathematical issues game theorists have faced in incorporating bounded
rationality into their models have also confronted physicists [11].

3.7 Conclusion

We have shown here how game theory and machine learning, though ostensibly
different, share the same fundamental mathematical structure. The dynamics
of systems in both fields can be cast in terms of potential information defined
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by the abstract field of information theory. The MW algorithm provides a
concrete example of how a game playing strategy can be adapted to form an
effective learning process, and proofs regarding the dynamics of Bayesian infer-
ence and the replicator dynamic demonstrate that generalized learning processes
share the structure of evolutionary games which play out over time. Informa-
tion geometry further generalizes the connections seen here. Statistical physics
among other fields also shares fundamental dynamics based on information.
Both mathematical insight and practical application benefit from recognizing
the deep connections between fields such as game theory and machine learning.
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A Proof of Theorem 1

Reproduced from [1].
For t = 1, . . . , T , we have that

n∑
i=1

wt+1(i) =

n∑
i=1

wt(i) · βM(i,Qt) (by definition of wt+1(i))

≤
n∑
i=1

wt(i) · (1− (1− β)M(i, Qt)) (β > 0, x ∈ [0, 1])

=

(
n∑
i=1

wt(i)

)
· (1− (1− β)M(Pt, Qt)) (by definition of Pt)

Unwrapping the recurrence and recalling that w1(i) = 1 we obtain

n∑
i=1

wT+1(i) ≤ n ·
T∏
t=1

(1− (1− β)M(Pt, Qt))

Next, note that, for any j,

n∑
i=1

wT+1(i) ≥ wT+1(j) = β
∑T

t=1M(j,Qt)

Combining with the preceding equation and taking logs gives

(lnβ)

T∑
t=1

M(j,Qt) ≤ lnn+

T∑
t=1

ln(1− (1− β)M(Pt, Qt))

≤ lnn− (1− β)

T∑
t=1

M(Pt, Qt) (∀x < 1, ln(1− x) ≤ −x)

Rearranging terms, and noting that this expression hold for any j gives

T∑
t=1

M(Pt, Qt) ≤ aβ min
j

T∑
t=1

M(j,Qt) + cβ lnn

Since the minimum (over mixed strategies P) in the bound of the theorem
must be achieved by a pure strategy j, this implies the theorem.
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